AVS: A Test Suite for Automatically Generated Code

Ekkehard Pofahl

Ford Motor Company

Torsten Sauer

Continental Automotive Systems

Oliver Busa

TUV Rheinland Industrie Service GmbH

AVS: Automotive Code Validation Suite

Safeguarding the Code Generation Tool Chain

Objectives:

- **Demonstrate:** That C code corresponds to graphical model as generated from design in Simulink® and Stateflow®
- Validate / Verify (V&V): The quality and robustness through dynamic testing of the code generation down the tool chain (code generator / compiler / linker / target)
- Generate: Meaningful test cases for automatic execution in a constantly growing test suite
- Support: Maintaining quality levels through Regression testing

AVS: Automotive Code Validation Suite

Project History

- Joint project of Ford / ContiAutomotive / TUV Rheinland
- Originated from a Compiler Validation Project
- Work started in early 2002
- There have been three major versions since 2002
- Supports different code generator / compiler / linker tool chains, e.g., dSPACE TargetLink and The MathWorks Real-Time Workshop[®]
 Embedded Coder
- Meaning of the acronym AVS changed during the project

Automatic Code Generation Tool Chain

Motivation for the AVS Project

- The advance of high level software design tools into the world of safety critical applications
- The prevailing use of graphical modeling and simulation, as in MATLAB® and Simulink®, among control engineers
- The facilitating of shorter production cycles through reduced complexity and approved reuse on validated design tools
- The maintenance and continuous improvement of product quality and robustness
- The tremendous risks involved in cases of faulty software in a mass produced vehicle
- The existing quality means (like e.g., FMEA) are not always applicable for software and its certification

AVS (Automotive Code Validation Suite) Concept

Key Properties of AVS

- Validation by means of an automated test-suite
- Test cases are generic and derived from the actual control algorithms
- Suite contains different test cases
 - positive: result o.k. expected
 - negative: expected to provoke error message
 - "fault": documents a faulty behaviour
- Easy changeability to fit different scenarios (different code generators, compilers and optimization settings).
- Provides easy way to use private test cases to protect intellectual property (IP)
- Communication to tool vendors and automotive industry to avoid double work

Processor in the Loop (PIL) with Evaluation Board

Target in the Loop (TIL) Setup with Production ECU

AVS Target in the Loop (TIL) Setup

Architecture of AVS compatible Test Cases

Embedded Coder Test Case

Description of Test Logic

AVS User Interface

AVS Result Evaluation

Shows the status of a previous stored comparision results.

Contains a list of different results which were found during comparision. A link to the list is only available if different simulation and target results were determined.

- In Oct 2005, a code generation tool chain including Real-Time Workshop Embedded Coder and the TI TMS 470 C compiler successfully passed AVS v3.0
- Successful validations with varying tool chains and versions

AVS for safety-related Applications, Software Safety

 Validation by means of an AVS: additional quality assurance for organizations using production code generation for safety-related applications

Supports requirements according to IEC 61508 and upcoming ISO 26262

Optimization Level Verification (OLV)

- Almost all tools (code generators, intermediate tools, compiler, assemblers, linkers) allow optimization settings
- Typical range for optimization levels is between 0 (no optimization) up some n (e.g., 6, full optimization)
- Every optimization step means additional operations between source model and final binary code
- Every optimization can possibly change the behavior of the final ECU with regard to overall performance and timing constraints
- OLV property of AVS either proofs "optimization works", or gives the maximum level, where optimization has no negative impact on the final ECU

Possible Interaction of AVS Partners

Affected Areas: Where AVS can be used

- CASE tools & methods
- Safety critical devices
- Controls
- Functional architecture
- Electric/Electronic (EE) architecture
- Vehicle integration
- Testing and regression testing

Automotive Code Validation Suite Summary

- AVS validates the entire tool chain, including the microcontroller and target ECU
- Processor in the Loop (PIL) Setup, Target in the Loop (TIL) Setup
- Joint venture Ford / ContiAutomotive / TUV Rheinland
- Active participation in German AVS working group (Audi, Ford, Daimler AG, BMW, Volkswagen, ContiAutomotive, Bosch, Wabco, Siemens-VDO, Getrag-Ford, ZF Friedrichshafen), comparable to AUTOSAR aim:

"Cooperate on standards, compete on implementation"

- Open for new partners
- 3 major revisions showed high quality of investigated tool chains
- Optimization Level Validation (OLV) saves target memory and execution time
- New features and areas of improvement for AVS are defined

AVS (Automotive Code Validation Suite) Concept

REFERENCES

- "Development Guidelines for Vehicle-Based Software." MISRA, 1994 (http://www.misra.org.uk/).
- MISRA-C:2004: "Guidelines for use of the C language in critical systems." MISRA, 2004 (http://www.misra.org.uk/).
- IEC 61131-3:2003-01: "Programmable controllers Part 3: Programming languages." Genf/Schweiz: Bureau Central de la Commission Electrotechnique Internationale (http://www.iec.ch/), 2003
- IEC 61508: "Functional safety of electrical/electronic/programmable electronic safety-related systems." (http://www.iec.ch/), 1998
- ISO 26262:2006: "Road vehicles Functional safety." Working draft, 2006
- ECE Regulation No. 13: "Uniform Provisions concerning the approval of vehicles of categories M, N and O with regard to braking." United Nations Economic Commission for Europe, 2003 (http://www.unece.org/)
- "Validation of the MathWorks code generator Real-Time Workshop® Embedded Coder with the Autocode Validation Suite (AVS) v3.0." Report No. 968/EL 211.02/05, TÜV Rheinland Group, 2005
- Information concerning the V-model: http://www.v-modell.iabg.de/
- AUTOSAR (AUTomotive Open System ARchitecture) http://www.autosar.org/

CONTACTS

Ekkehard Pofahl, Ford Motor Company epofahl@ford.com

Torsten Sauer, Continental Automotive Systems
Torsten.Sauer@contiautomotive.com

Oliver Busa, TUV Rheinland Group Oliver.Busa@de.tuv.com

